

Dr Hans C.J. Vrolijk, Head of Centre of Economic Information

Wageningen Economic Research

INTIA: 3rd ANNUAL WORKSHOP ON FARM MANAGEMENT

1

Short history of Wageningen Economic Research

Year	Institutional change
1940	LEI - Founded by Farmers Organisations
1971	Part of Government (Foundation DLO)
1996	Merging of Wageningen University & Agricultural Research Organisation (DLO)
2000	Privatisation of LEI-DLO
2016	New name of LEI -> Wageningen Economic Research

New policy objectives ask for new data

- European policies are (being) adapted:
 - Common Agricultural Policy: Cross Compliance, Greening, Rural development
 - Green deal, farm to fork strategy, bio-diversity strategy
- Policy evaluation has a need for data on these topics
- Broader need for sustainability information from retail, sector initiatives, farming sector, governments, NGO's.

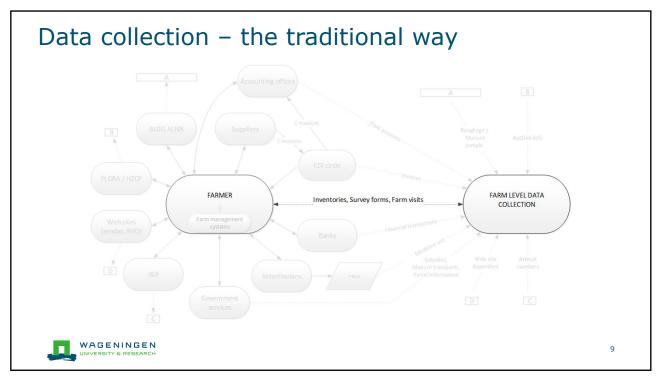
Background sustainability monitoring in the Netherlands

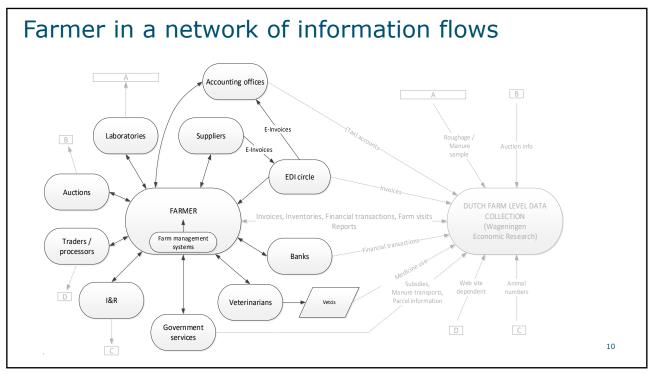
- Societal concerns about agricultural production
- Private sector initiatives on sustainability
- Policy objectives broader than economic results
 - Minimum standards
 - Specific objectives
- National policies of Dutch Ministry: transition sustainable agriculture, policy sustainable livestock sector, vision on circular agriculture
- Integrated assessment of policy measures (environmental economic evaluations)

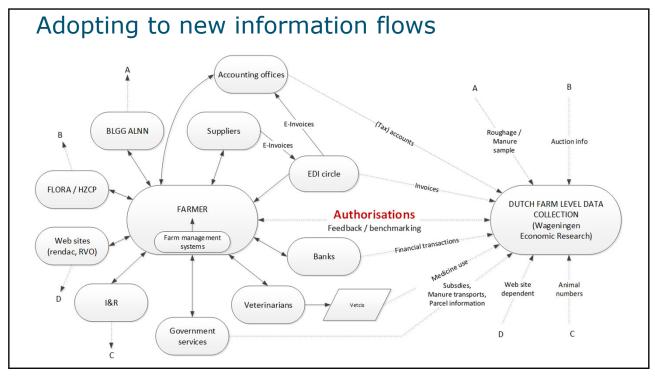
5

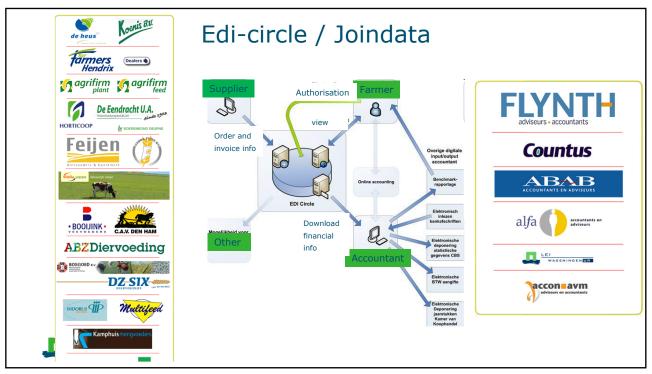
Sustainability topics in Dutch Policy and FADN

- Energy use and GHG emissions
- Manure and nutrients
- Use of antibiotics
- Use of pesticides
- Water quality
- Innovation
- Nature management
- Other income sources
- Farm tourism


Changing policy priorities lead to new information needs

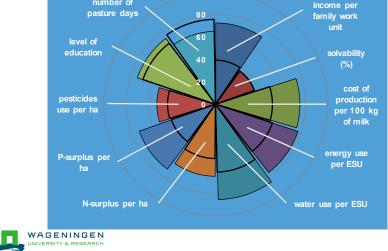



Philosophy of Dutch farm monitoring


- Collect farm level data on a wide range of sustainability issues to provide policy and research relevant data
- Integrated data collection
 - As a base for different statutory tasks
 - Adaptation of data collection to new policy needs
- Principles
 - Collect once use multiple times
 - Minimize (administrative) burden of farmers
 - Use of (electronically) available data
 - Provide useful information for all stakeholders (incl. farmers)

Administrative data from RVO (Ministry Agency)

- Parcel registration
 - Crop, size, soil type, rent / ownership
- Derogation
 - Ha grassland, Ha arable land, P status, derogation
- Subsidy payments
 - Greening entitlements
- Manure transports


13

Collecting sustainability data on Dutch FADN farms

- Advantages:
 - Efficiency advantages in data collection
 - Allows quality checks
 - Allows integrated analysis
 - Allows better policy design
- Shows diversity of performance
 - Enables analysing differences in performance
 - Benchmarking and options for improvements

Comparison of the scores of the most sustainable farms with the average farm number of pasture days level of family farm income per family work unit

15

Sustainability report for farmers

Feedback report with development over years:

- Make discussion of sustainability more specific
- Increases understanding of sustainability performance

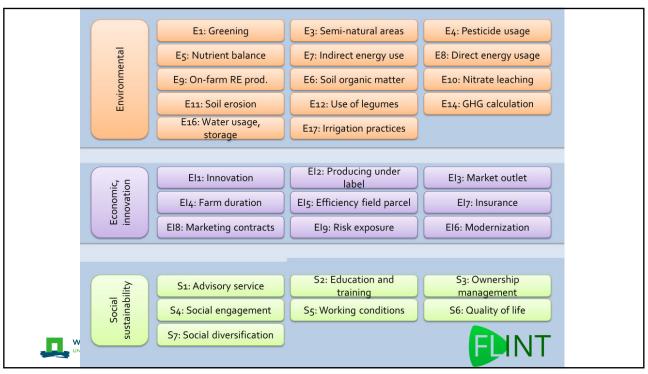
Benchmark report with comparison of sustainability performance with a group of similar farms

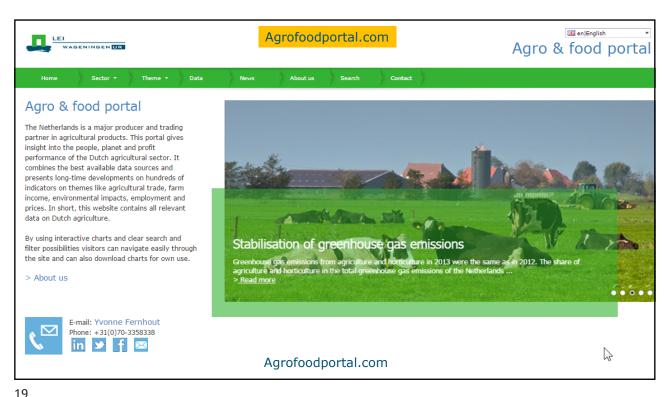
- Makes differences explicit
- Helps to discuss and find ways to improve sustainability performance

 WAGENINGEN
UNIVERSITY & RESEARCH
DIVIVERSITI & RESEARCH

	Green house gasses	group average	farm nr
	Emission (x 1.000 kg CO2-equivalents)	991	
١	Methane (%)	51	
Type-	NOx (%)	14	
	CO2 (%)	35	
	Manure (methane and NOx)	14	
Source =	SOIL (Nox direct and indirect)	12	
	Energy use (CO2)	8	
	contract work and other (CO2)	1	
	Bought feeding stuff (CO2)	21	
	Bought artificial fertilizer (CO2 en NOx)	5	
	Other (CO2)	1	
L	Intestine Fermentation	28	
	Emission per cow (kg CO2-equivalents)	11,982	

Individual data hidden because of confidentiality


People		
Percentage cows in the meadow	~	22
Health costs	~	110
Labour input per 1000 kg milk	_	5
Planet		
Pesticide use, kg active substance	~	1
Pesticides environmental pressure points	$\overline{}$	0
N surplus from farming, kg per ha		204
F surplus from farming, kg per ha	~	25
N surplus at soil (including mineralisation, kg per ha)	_	183
Energy use (MJ per cow)	_	5,080
Use of water (tap) (m3 per cow)	~	24


Advantages of an Integrated data set

- Measurement of different sustainability indicators on the same set of farms
- Allows the analysis of the full chain from: Policy objective -> policy measure -> impact on farm -> farm management decisions -> up to: sustainability performance of farms
- Trade-off and jointness of performance on different sustainability measures as a consequence of policy measures
 - (for example is the economic performance at the expense of environmental performance, sustainability performance of large farms, most cost effective ways to reduce emissions etc.)

17

Conclusions and discussion

- Continuous need for fact-based policy-making at national and international level
- Increasing need for <u>farm level</u> data on the <u>sustainability performance</u> of farms
- Adaptation to new policy needs to maintain relevance for farmers and policy makers
- Integrated data collection provides advantages for data collection and use
- Interest of farmers should be taken into account

20

