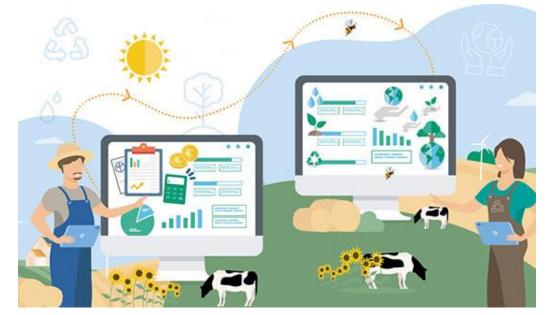
3rd ANNUAL WORKSHOP ON FARM MANAGEMENT SUSTAINABILITY THROUGH ADVISORY SERVICES, POLICIES AND MARKET

Adapting farm data collection and analysis for sustainability reporting - the Irish experience

Trevor Donnellan Teagasc, Ireland

Villava, Spain October 7th 2021

Policy Rationale


- Governments & researchers need to monitor agriculture
 - particularly agriculture's interaction with environment
- Policy creating environmental targets
 - climate change, air and water quality,
 - biodiversity, protection of wildlife and
 - food quality

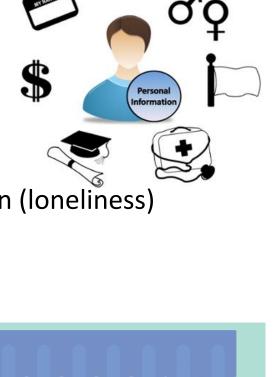
Use of FADN based approaches

- Use the Farm Accountancy Data Network (FADN) as a foundation
- Extend FADN data collection to produce
 - agri-environmental metrics
 - **social metrics** that go beyond the traditional income, age, gender stratifications
- Combine FADN data with other data sources
 - Has the farmer supplied data to someone else?
 - e.g. administrative data
- Then use FADN to explore other concerns
 - Allows us to then ask farmers new/different questions to get new types of data



Substantial environmental data needs

- Want to measures the changes happening on farms
- Environmental data is diverse and can be complex
- Environmental indicators may require several pieces of data


- Proxy measures can sometimes be useful
 - but are proxy measures good enough?
 - can they capture small incremental changes made by farmers?
 - a poor proxy cannot identify small annual changes
- In the end, a high level of data accuracy will be required

But there are also social data needs

- Social data is more personal (than economic or environmental data)
- Social data is sensitive (more private) in nature
 - e.g. farm succession plans, non-farm incomes, personal health, social isolation (loneliness)
- Sensitive questions can reveal "hidden" family concerns
 - family conflict, mental health issues, non-farm financial problems
- Strong relationship between farmer and data recorder is required
- **Personality** of the data recorder is important
 - may require skills that are difficult to learn
- Confidentiality is even more important with social data

Capturing Synergies and Trade Offs

- Environmental & social data compared alongside economic data
 - Relationship between economic, social and environmental performance of farms
- Critical value in such data analysis
 - e.g. designs policies to reach environmental objectives in a cost effective way
- Look at relationship between
 - environment and different farm types (big/smalls, high/low income, young/old farmers
 - farmer training and adoption of technologies
 - income growth and environmental outcomes

Environmental Data

Social Data

- Agriculture and Climate Mitigation
 - o GHGs
 - Carbon Sequestration
- Soils
 - Soil Erosion
 - o Soil Organic Matter Loss
 - Soil Biodiversity Loss
 - Soil Compaction
 - Soil Contamination
 - Salinisation
 - Sealed Soils
 - Desertification
 - o Soil Practices Addressing Soil Degradation
 - Crop Rotation
 - Soil Cover
 - o Tillage Management Against Erosion
 - Precision Farming
- Biodiversity
 - Farmland Bird Index
 - Conservation status of habitats and species of EU interest which are dependent on agriculture
 - Grassland Butterflies Index
 - o Key Pressures on Farmland Species (there are many)
 - o Farm landscape features and their loss
 - Presence of high-nature-value farming
- Other
 - o Ammonia
 - Adoption of biocontrol
 - o Renewable energy
 - o Genetic diversity of seeds
 - Pollinators

- Structural Change and Generational Renewal
 - Evolution of Farm Numbers
 - Evolution of Farm Size
 - Ageing in the Farm Population
 - Farm Diversity
 - Status of Young Farmers
 - Age and Farm Specialisation
 - o Age and Farm Income
 - Volume of Land Sales
 - o Land Selling Prices
 - Land Rental Prices
 - Access to Finance and Credit
 - Level of Training
- Jobs and Growth in Rural Areas
 - o GDP Growth and Poverty Rates
 - Unemployment in Rural Area
 - Broadband Coverage and Speeds
 - o Role of Agriculture in total employment
 - Size of the Agricultural Labour Force
 - Off-Farm Income
- Health, Food & Antimicrobial Resistance
 - o Sales of veterinary antimicrobial agents
 - Use of veterinary antimicrobials in EU animal husbandry
- Other
 - Distance from services
 - Remoteness
 - Accessibility
 - Connectivity
 - Poverty rate
 - Home consumption
 - Social inclusion

Integrated datasets maximise added value

- Best way to collect economic, social and environmental data?
- Can be collected in one of two ways
 - 1. multiple surveys involving different samples
 - or
 - 2. one consolidated survey using same sample
 - Option 2 (above) is the preferred option
 - integration of economic, social & environmental data
 - richer resource for research purposes
 - can unlock the answers to more complex questions

Advantages of Improving Overall Data Quality

- Making connection between financial data & physical data
 - monetary (financial) data and quantity (physical) data
 - provides big advantages
 - better data quality and scope
- Data quality can be enhanced
 - by cross-checking financial and physical data
 - quantity and monetary based measurement
- Systematic recording can be used
 - addresses the error inherent in farmer responses that are based on their recollection of what they do

Collect more data sooner rather than later

- Important to get the full picture of current farm circumstances
 - change is already happening on farms need to measure these changes
- Acknowledge progress being made by farmers
- Generally can't backcast historical data Can't turn clock back
- The sooner you start collecting new data series the better
 - the sooner you will have a useful time series to assess trends
 - then capable of crediting the changes that farmers are making
 - or identifying areas where progress is absent

How can the data be used for evaluation?

Are results being achieved in line with CAP and other EU/national policy objectives?

Economic Data

- Income and CAP support distributions, CAP support as a share of farm income, income volatility
- Productivity measures

Social Data

- Rate of progress/regression concerning generational renewal
- Non monetary life quality issues (work/life balance, access to services)
- Social inclusion

Environmental Data

- GHG indicators (per farm, per ha, per kg product)
- N and P Balances/Surpluses (per farm, per ha)
- Ammonia indicators (per farm, per ha)
- Extent of use of emission reduction technologies or environmental farm management practices

..... and further benefits can also be derived

- Explore relationship between economic, social & environmental metrics
- Economic cost of environmental sustainability measures can be identified
- Allows us to target specific policies at particular farms
- Determine the anticipated costs and benefits of policies
- Provides content for advisory services

Advisory Example: Signpost Farms Programme

- Multi-annual advisory campaign in Ireland
- Reducing gaseous emissions from Irish agriculture
- and also:
 - improve water quality
 - maintain and in some cases improving bio-diversity
 - reduce costs and create more profitable and sustainable farming enterprises.
- Farms will have their sustainability measured annually as part of the process
- Using the knowledge developed in measuring sustainability described earlier

Conclusions

- Need to broaden the type of data collected
- Advantages of combining different types of data
 - produce more informative analysis
 - answer more challenging questions
 - design more effective and better targeted policies
 - provide farmers with new data tools to make better (socially desirable) decisions
- But it will be challenging
 - it will take several years
 - start the process sooner rather than later
 - capacity to speed up the process if additional resources are provided

End